Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(50): 7787-7790, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37265232

RESUMO

We report a solution-processing method to prepare an inorganic LaNiO3 (LNO) hole-transport layer (HTL) under low temperature (<150 °C) for the first time. The inverted PSCs prepared with LNO exhibit high UV-stability and promising efficiency (17.15%). Our preliminary results show great potential for LNO HTL in the fabrication of efficient and photostable inverted perovskite solar cells (PSCs).

2.
Adv Mater ; 35(6): e2207763, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373546

RESUMO

Photodetectors (PDs) are the building block of various imaging and sensing applications. However, commercially available PDs based on crystalline inorganic semiconductors cannot meet the requirements of emerging wearable/implantable applications due to their rigidity and fragility, which creates the need for flexible devices. Here, a high-performance flexible PD is presented by gating an organic electrochemical transistor (OECT) with a perovskite solar cell. Due to the ultrahigh transconductance of the OECT, the device demonstrates a high gain of ≈106 , a fast response time of 67 µs and an ultrahigh detectivity of 6.7 × 1017 Jones to light signals under a low working voltage (≤0.6 V). Thanks to the ultrahigh sensitivity and fast response, the device can track photoplethysmogram signals and peripheral oxygen saturation under ambient light and even provide contactless remote sensing, offering a low-power and convenient way for continuous vital signs monitoring. This work offers a novel strategy for realizing high-performance flexible PDs that are promising for low-power, user-friendly and wearable optoelectronics.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35658419

RESUMO

Perovskite films with few defects play a key role in preparing high-performance perovskite solar cells (PSCs). Here, cesium chloride (CsCl) was introduced as a modulator into a perovskite precursor for manipulating the crystallization of perovskite films. By introducing CsCl, dense homogeneous perovskite films with high crystallinity, preferential orientation, and a pure black perovskite phase were prepared. In addition, the carrier lifetime of perovskite films was significantly increased because of the suppressed nonradiative recombination. Correspondingly, the power conversion efficiency (PCE) of small-area devices using CsCl regulation was increased from 20.56 to 22.86%. The 1 cm2 PSCs present a PCE of 21.53%, demonstrating their reliability for mass production. Furthermore, the device showed excellent stability maintaining 93.8% of its initial PCE after 500 h of continuous irradiation. Also, 95.3% of its PCE was kept after storage in ambient air for 2100 h. This study demonstrates that CsCl doping is a reliable way to prepare PSCs for practical applications.

4.
Adv Sci (Weinh) ; 8(11): e2004315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34105283

RESUMO

Tin (Sn)-based perovskites with favorable optoelectronic properties and ideal bandgaps have emerged as promising alternatives to toxic lead (Pb)-based perovskites for photovoltaic applications. However, it is challenging to obtain high-quality Sn-based perovskite films by solution process. Here, liquid-exfoliated 2D transition-metal dichalcogenides (i.e., MoS2 , WS2 , and WSe2 ) with smooth and defect-free surfaces are applied as growth templates for spin-coated FASnI3 perovskite films, leading to van der Waals epitaxial growth of perovskite grains with a growth orientation along (100). The authors find that WSe2 has better energy alignment with FASnI3 than MoS2 and WS2 and results in a cascade band structure in resultant perovskite solar cells (PSCs), which can facilitate hole extraction and suppress interfacial charge recombination in the devices. The WSe2 -modified PSCs show a power conversion efficiency up to 10.47%, which is among the highest efficiency of FASnI3 -based PSCs. The appealing solution phase epitaxial growth of FASnI3 perovskite on 2D WSe2 flakes is expected to find broad applications in optoelectronic devices.

5.
Light Sci Appl ; 10(1): 68, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790230

RESUMO

Grain boundaries in organic-inorganic halide perovskite solar cells (PSCs) have been found to be detrimental to the photovoltaic performance of devices. Here, we develop a unique approach to overcome this problem by modifying the edges of perovskite grain boundaries with flakes of high-mobility two-dimensional (2D) materials via a convenient solution process. A synergistic effect between the 2D flakes and perovskite grain boundaries is observed for the first time, which can significantly enhance the performance of PSCs. We find that the 2D flakes can conduct holes from the grain boundaries to the hole transport layers in PSCs, thereby making hole channels in the grain boundaries of the devices. Hence, 2D flakes with high carrier mobilities and short distances to grain boundaries can induce a more pronounced performance enhancement of the devices. This work presents a cost-effective strategy for improving the performance of PSCs by using high-mobility 2D materials.

6.
Adv Sci (Weinh) ; 7(14): 2000776, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714769

RESUMO

2D Ruddlesden-Popper perovskites have attracted wide attention recently because of tunable optoelectronic properties and have been used as alternatives to their 3D counterparts in various optoelectronic devices. Here, a series of (PEA)2(MA) n -1Pb n I3 n +1 perovskite thin films is designed and fabricated by a convenient hot-casting method to obtain gradient n in the films, which leads to the formation of vertical heterojunctions that can enhance charge separation in the films under light illumination. Based on a single gradient perovskite film, a highly sensitive and stable photodetector with a responsivity up to 149 AW-1 and a specific detectivity of 2 × 1012 Jones is obtained. This work paves a way to realizing high-performance optoelectronic devices with enhanced charge separation by introducing compositional gradient in a perovskite film.

7.
ACS Appl Mater Interfaces ; 12(16): 18769-18776, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212606

RESUMO

In recent years, photodetectors based on organic-inorganic lead halide perovskites have been studied extensively. However, the inclusion of lead in those materials can cause severe human health and environmental problems, which is undesirable for practical applications. Here, we report high-performance photodetectors with a tin-based perovskite/PEDOT:PSS vertical heterojunction. The device demonstrates a broadband photoresponse from NIR to UV. The maximum responsivity and gain are up to 2.6 × 106 A/W and 4.7 × 106, respectively. Moreover, a much shorter response time and higher detectivity can be achieved by reducing the thickness of PEDOT:PSS. The outstanding performance is due to the excellent optoelectronic properties of the perovskite and the photogating effect originating from the heterojunction. Furthermore, devices fabricated on flexible substrates can demonstrate not only high sensitivity but also excellent bending stability. This work opens up the opportunity of using lead-free perovskite in highly sensitive photodetectors with vertical heterojunctions.

8.
Adv Sci (Weinh) ; 6(17): 1900751, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31508281

RESUMO

Organic-inorganic hybrid perovskites have emerged as promising functional materials for high-performance photodetectors. However, the toxicity of Pb and the lack of internal gain mechanism in typical perovskites significantly hinder their practical applications. Herein, a low-voltage and high-performance photodetector based on a single layer of lead-free Sn-based perovskite film is reported. The device shows broadband response from ultraviolet to near-infrared light with a responsivity up to 105 A W-1 and a high gain at a low operating voltage. The outstanding performance is attributed to the high hole mobility, p-doping nature, and excellent optoelectronic properties of the Sn-based perovskite. Moreover, the device is assembled on a flexible substrate and demonstrates both high sensitivity and good bending stability. This work demonstrates a route for realizing nontoxic, low-cost, and high-performance perovskite photodetectors with a simple device structure.

9.
Small ; 15(25): e1901004, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31087760

RESUMO

Phototransistors are recognized as highly sensitive photodetectors owing to their high gain induced by a photogating effect. However, the response speed of a typical phototransistor is rather slow due to the long lifetime of trapped carriers in the channel. Here, a novel Schottky barrier-controlled phototransistor that shows ultrahigh sensitivity as well as a fast response speed is reported. The device is based on a channel of few-layer black phosphorous modified with a MAPbI3- x Clx perovskite layer, whose channel current is limited by the Schottky barrier at the source electrode. The photoresponse speed of the device can be tuned by changing the drain voltage, which is attributed to a field-assisted detrapping process of electrons in the perovskite layer close to the Schottky barrier. Under optimal conditions, the device exhibits a high responsivity of 106 -108 A W-1 , an ultrahigh specific detectivity up to 9 × 1013 Jones, and a response time of ≈10 ms.

10.
Adv Mater ; 31(24): e1807689, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31033074

RESUMO

The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution-processed perovskite films. Here, solution-phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in-plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole-transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high-performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.

11.
Angew Chem Int Ed Engl ; 58(3): 806-810, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30499609

RESUMO

Tin-based perovskites with excellent optoelectronic properties and suitable band gaps are promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, it is challenging to prepare highly stable and efficient tin-based PSCs because Sn2+ in perovskites can be easily oxidized to Sn4+ upon air exposure. Here we report the fabrication of air-stable FASnI3 solar cells by introducing hydroxybenzene sulfonic acid or its salt as an antioxidant additive into the perovskite precursor solution along with excess SnCl2 . The interaction between the sulfonate group and the Sn2+ ion enables the in situ encapsulation of the perovskite grains with a SnCl2 -additive complex layer, which results in greatly enhanced oxidation stability of the perovskite film. The corresponding PSCs are able to maintain 80 % of the efficiency over 500 h upon air exposure without encapsulation, which is over ten times longer than the best result reported previously. Our results suggest a possible strategy for the future design of efficient and stable tin-based PSCs.

12.
ACS Appl Mater Interfaces ; 9(49): 42779-42787, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29139287

RESUMO

An ideal photodetector must exhibit a fast and wide tunable spectral response, be highly responsive, have low power consumption, and have a facile fabrication process. In this work, a self-powered photodetector with a graphene electrode and a perovskite photoactive layer is assembled for the first time. The graphene electrode is prepared using a solution transfer process, and the perovskite layer is prepared using a solution coating process, which makes the device low cost. Graphene can form a Schottky junction with TiO2 to efficiently separate/transport photogenerated excitons at the graphene/perovskite interface. Unlike the conventional photovoltaic structure, in this photodetector, both photogenerated electrons and holes are transported along the same direction to graphene, and electrons tunneled into TiO2 are collected by the cathode and holes transported by graphene are collected by the anode; therefore, the photodetector is self-powered. The photodetector has a broad range of detection, from 260 to 900 nm, an ultrahigh on-off ratio of 4 × 106, rapid response to light on-off (<5 ms), and a high level of detection of ∼1011 Jones. The high performance is primarily due to the unique charge-transport property of graphene and strong light absorption properties of perovskite. This work suggests a new method for the production of self-powered photodetectors with high performance and low power consumption on a large scale.

13.
Opt Express ; 23(4): 4144-52, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836452

RESUMO

Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

14.
Opt Express ; 22(14): 17092-8, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090523

RESUMO

A terahertz parametric oscillator based on KTiOAsO(4) crystal is demonstrated for the first time. With the near-forward scattering configuration X(ZZ)X + Δφ, the polarizations of the pump, the Stokes and the generated THz waves are parallel to the z-axis of the crystal KTA. When the incident angle θext of the pump wave is changed from 1.875° to 6.500°, the THz wave is intermittently tuned from 3.59 to 3.96 THz, from 4.21 to 4.50 THz, from 4.90 to 5.16 THz, from 5.62 to 5.66 THz and from 5.92 to 6.43 THz. The obtained maximum THz wave energy is 627 nJ at 4.30 THz with a pump energy of 100 mJ. It is believed that the terahertz wave generation is caused by the stimulated scattering of the polaritons associated with the most intensive transverse A(1) mode of 233.8 cm(-1). Four much weaker transverse A(1) modes of 132.9 cm(-1), 156.3 cm(-1),175.1 cm(-1), and 188.4 cm(-1) cause four frequency gaps, from 3.97 THz to 4.20 THz, from 4.51 to 4.89 THz, from 5.17 to 5.61 THz and from 5.67 to 5.91 THz, respectively.

15.
Opt Lett ; 39(13): 3706-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978716

RESUMO

KTiOPO4 (KTP) crystal is used as the nonlinear medium in a surface-emitted terahertz-wave parametric oscillator for the first time. The oscillating Stokes beam propagates along the x axis of the KTP crystal, the pumping beam propagates with a small incident angle θ(ext) to the x axis, and the polarizations of the pumping beam, the Stokes beam, and the THz wave are along the z axis. When θ(ext) is changed from 1.250° to 6.000°, the THz wave is intermittently tuned from 3.17 to 3.44 THz, from 4.19 to 5.19 THz, and from 5.55 to 6.13 THz. The maximum output of the THz wave is 336 nJ, obtained at 5.72 THz with a pumping energy of 80 mJ. The two frequency gaps, from 3.44 to 4.19 THz and from 5.19 to 5.55 THz, are located in the vicinities of the A1 modes of 134 and 178.7 cm⁻¹, which are strongly infrared absorbing.

16.
Opt Lett ; 39(4): 754-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562198

RESUMO

A MgO:LiNbO3 slab configuration for the surface-emitted terahertz-wave parametric oscillator (TPO) is presented. The pump and the oscillating Stokes beams were totally reflected at the slab surface and propagated zigzaggedly in the slab MgO:LiNbO3 crystal. Up to five terahertz beams were emitted perpendicularly to the surface of the crystal. The total output energy of the five THz-wave beams was 3.56 times as large as that obtained from the conventional surface-emitted TPO at the same experimental conditions. The intensity distributions of the THz wave beams were measured, and they were unsymmetrical in the horizontal direction while symmetrical in the vertical direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...